benchmarks   2494

« earlier    

Valloric/jmh-playground: A JMH learning environment
A JMH learning environment. Contribute to Valloric/jmh-playground development by creating an account on GitHub.
jmh  java  benchmarks 
14 days ago by kwbr
c++ - Which is faster: Stack allocation or Heap allocation - Stack Overflow
On my machine, using g++ 3.4.4 on Windows, I get "0 clock ticks" for both stack and heap allocation for anything less than 100000 allocations, and even then I get "0 clock ticks" for stack allocation and "15 clock ticks" for heap allocation. When I measure 10,000,000 allocations, stack allocation takes 31 clock ticks and heap allocation takes 1562 clock ticks.

so maybe around 100x difference? what does that work out to in terms of total workload?

hmm:
http://vlsiarch.eecs.harvard.edu/wp-content/uploads/2017/02/asplos17mallacc.pdf
Recent work shows that dynamic memory allocation consumes nearly 7% of all cycles in Google datacenters.

That's not too bad actually. Seems like I shouldn't worry about shifting from heap to stack/globals unless profiling says it's important, particularly for non-oly stuff.

edit: Actually, factor x100 for 7% is pretty high, could be increase constant factor by almost an order of magnitude.
q-n-a  stackex  programming  c(pp)  systems  memory-management  performance  intricacy  comparison  benchmarks  data  objektbuch  empirical  google  papers  nibble  time  measure  pro-rata  distribution  multi  pdf  oly-programming  computer-memory 
23 days ago by nhaliday
classification - ImageNet: what is top-1 and top-5 error rate? - Cross Validated
Now, in the case of top-1 score, you check if the top class (the one having the highest probability) is the same as the target label.

In the case of top-5 score, you check if the target label is one of your top 5 predictions (the 5 ones with the highest probabilities).
nibble  q-n-a  overflow  machine-learning  deep-learning  metrics  comparison  ranking  top-n  classification  computer-vision  benchmarks  dataset  accuracy  error  jargon 
6 weeks ago by nhaliday
Basic Error Rates
This page describes human error rates in a variety of contexts.

Most of the error rates are for mechanical errors. A good general figure for mechanical error rates appears to be about 0.5%.

Of course the denominator differs across studies. However only fairly simple actions are used in the denominator.

The Klemmer and Snyder study shows that much lower error rates are possible--in this case for people whose job consisted almost entirely of data entry.

The error rate for more complex logic errors is about 5%, based primarily on data on other pages, especially the program development page.
org:junk  list  links  objektbuch  data  database  error  accuracy  human-ml  machine-learning  ai  pro-rata  metrics  automation  benchmarks  marginal  nlp  language  density  writing  dataviz  meta:reading  speedometer 
7 weeks ago by nhaliday

« earlier    

related tags

2018  2019  4  a+  abstraction  accuracy  acmtariat  advanced  aggregator  ai  algorithms  amd  analysis  analytics  apache  applications  articles  artificial  audio  automation  aws  awsbatch  b+  backup  basic  benchamrk  benchmark  benchmarking  best-practices  big.data  big_data  blog-posts  blog  browser  business  c#  c++  c(pp)  career  charity  checking  checklists  cis  classification  cli  cloud  cloudcomputing  cloudfunctions  codecs  coldstart  comparison  comparisons  compensation  competition  composition-decomposition  compute  computer-memory  computer-vision  computer  computing  coral  cost-benefit  cpp  cpu  cracker-prog  crosstab  css  cuda  data-science  data.table  data  database  dataset  datasets  datastructures  dataviz  debugging  deep-learning  demographics  density  dependencies  devops  devtools  digitalmaking  disk  distribution  dotnet  dplyr  ec2  ecommerce  elasticsearch  empirical  encoding  end  engineering  ensembles  error  expert-experience  fail  failboat  fio  flow  framework  frameworks  front  frontier  functional  games  gcp  generalization  getrichslowly  glue  golang  google  gotchas  gpu  gpus  gradient-descent  graph-database  graph.theory  graph  graphs  guide  hardware  hash-table  hash  hashmap  haskell  homepage  honor  hosting  howto  huawei  human-ml  industry  inference  info-foraging  infosec  init  install  instance-types  instances  intel  intelligence  internet  internet_speed  intricacy  io  ioc  iot  ipad  iphone  iphonexs  jargon  java  javascript  jetson  jetty  jmh  jobs  json  jvm  kpis  l1tf  lambda  language  laptop  latency  learning  libraries  links  linux  list  lmdb  long-term  luajit  mac  machine-learning  machine.learning  machine  marginal  marketing  maths  mds  measure  medicine  meltdown  memory-management  meta:reading  methodology  metrics  microframeworks  micropc  microservices  microsoft  ml  mlperf  money  msgpack  multi  museum_of_english_rural_life  ncs  nes  netty  network  network_speed  neural  news  nibble  nintendo  nitty-gritty  nlp  nlu  nvidia  objektbuch  ocaml-sml  oltp  oly-programming  open-problems  open_source  opencv  ops  optimization  org:bleg  org:junk  organization  os  osx  overflow  papers  parsimony  pdf  peformance  people  perf  performance  pi  pilosa  pipeline  pj:gitbabel  planning  play  plots  pls  postgres  presto  pro-rata  profile  profiling  programming-language  programming  progression  protobuf  protocols  python  q-n-a  qra  qubole  r  rails  raising_capital  random  ranking  raspberry  raspberrypi  raspberrypy  react  realness  recruiting  regularization  report  research  resources  retirement  review  reviews  reviewsignal  rosetta  rpi  rpi3  rspec  rtx  ruby  rust  s3  saving  scala  scaling-tech  search  security  serialization  serverless  shootout  sleuthin  social_media  socialmedia  spectre  speed  speedometer  stackex  startups  state-of-art  statistics  stick  storage  stream  sv  systems  tech  technology  techtariat  tensorflow  tesor  testing  tests  thisvsthat  threading  time-series  time  tomcat  tools  top-n  tradeoffs  training  transaction-processing  transactions  troubleshooting  turing  tutorial  undertow  unix  unsupervised  usb  vc  venture_capital  video  visualization  web-development  web  web_tool  webdev  websocket  wordpress  working-stiff  writing  zombieload  🖥 

Copy this bookmark:



description:


tags: