bayesian   7347

« earlier    

GitHub - ASKurz/Doing-Bayesian-Data-Analysis-in-brms-and-the-tidyverse
BRMS kruschke
Contribute to ASKurz/Doing-Bayesian-Data-Analysis-in-brms-and-the-tidyverse development by creating an account on GitHub.
bayesian  r.stats  r.bayes 
20 days ago by azadag
Half a dozen frequentist and Bayesian ways to measure the difference in means in two groups | Andrew Heiss
Taking a sample from two groups from a population and seeing if there’s a significant or substantial difference between them is a standard task in statistics. Measuring performance on a test before and after some sort of intervention, measuring average GDP in two different continents, measuring average height in two groups of flowers, etc.—we like to know if any group differences we see are attributable to chance / measurement error, or if they’re real.

Classical frequentist statistics typically measures the difference between groups with a t-test, but t-tests are 100+ years old and statistical methods have advanced a lot since 1908. Nowadays, we can use simulation and/or Bayesian methods to get richer information about the differences between two groups without worrying so much about the assumptions and preconditions for classical t-tests.

Mostly as a resource to future me, here are a bunch of different ways to measure the difference in means in two groups. I’ve done them all in real life projects, but I’m tired of constantly searching my computer for the code to do them:)

These ways can all be adapted to different situations (i.e. difference in proportions, one-sample difference in means, etc.). The process for simulation and Bayesian approaches will be roughly the same, while for frequentist approaches, you’ll need to walk through a statistical test workflow to find the app
frequentist  tests  bayesian  statistics  R 
20 days ago by deprecated

« earlier    

related tags

ab-testing  abtesting  ai  analytics  antifragile  bayes  bayesian-networks  bayesnets  bda  blog  blogs  book  cancer  causal-inference  coding  community  courses  dash  dashdone  data-science  data  datae  datascience  decision-making  deep-learning  deeplearning  dialogue  discriminative  dsmeetup  ebook  fda  filter  frequentist  gaussian  generative  genomics  guided  healthcare  hlm  induction  inference  introduction  it  jupyter  kalman-filter  kalman  kernel  learning  lecture  machine-learning  machine_learning  machinelearning  math  mcelreath  mcmc  medicine  ml  modelling  montecarlo  nber  neural  nips  nlp  nn  notebook  one_armed_bandit  paper  papers  pearl  people  physics  probabilistic  probability  program  programming  pymc3  python  r.bayes  r.stats  r  regression  research  risk-assessment  rl  signal-analysis  stan  statistics  stochastic_methods  subroutine  summary_statistics  tensorflow  testing  tests  tools  tr-2019-01  tr-2019-02  tutorial  uqlab  vae  variational-inference  variationalinference  video  videos  visualisation  visualization  webdesign  webdev  workshop  youtube 

Copy this bookmark: