Sentiment   2646

« earlier    

Three, six or 36: how many basic plots are there in all stories ever written? | Books | The Guardian
“There is no reason why the simple shapes of stories can’t be fed into computers; they are beautiful shapes,” said Vonnegut.

A new academic study has done exactly this, and gives us yet another reason to wish the great man were still with us to share his thoughts on it (and perhaps resubmit that thesis). Researchers from the University of Vermont’s Computational Story Lab fed 1,737 stories from Project Gutenberg – all English-language texts, all fiction – through a program that analysed their language for its emotional content.

Putting – maybe – an end to a debate that has been ongoing for millennia, the researchers found there are “six core trajectories which form the building blocks of complex narratives”. These are: “rags to riches” (a story that follows a rise in happiness), “tragedy”, or “riches to rags” (one that follows a fall in happiness), “man in a hole” (fall–rise), “Icarus” (rise–fall), “Cinderella” (rise–fall–rise), and “Oedipus” (fall–rise–fall). The most successful – here defined as the most downloaded – types of story, they find, are Cinderella, Oedipus, two sequential man in a hole arcs, and Cinderella with a tragic ending.

Their analysis (and the “simple shapes of stories” as theorised by Vonnegut) is provided online, and it’s fascinating to pick through. I liked the rise-fall-rise shape of Gulliver’s Travels, where words such as “destroy”, “enemy” and “ignorance” drag down the happiness rating, and the plunging “Icarus” graph of Romeo and Juliet, plagued by words such as “tears”, “die”, “weep” and “poison”.
literature  sentiment  analysis  nlp  text  story  stories 
12 days ago by msszczep
Sentiment lexicon for Portuguese
r  packages  sentiment  portuguese  data  textbook 
23 days ago by jerid.francom
Receptiviti - Home is a technology company with deep roots in academia that is using AI, NLP, Machine Learning and proprietary Language-Psychology Science to reinvent the way organizations understand and engage their most important assets -- people.
learning  machine  NLP  linguistics  sentiment  text 
26 days ago by kybernetikos
Machine learning bias
Sentiment classifier is bigoted. That's not a surprise; the problem is when it's applied wrong.
ml  machinelearning  google  sentiment  bias  racism  ai 
29 days ago by nelson
Idioms in sentiment analysis
some nice small datasets for idioms
data  ml  nlp  sentiment 
5 weeks ago by mootPoint

« earlier    

related tags

1896  1964  2015  2020  380  451  ai  algorithm  analysis  analytics  ant  api  apis  apple  architecture  archive  art  artifical-intelligence  atomictime  awesome  bias  bizalignment  blog-post  books  c#  category  chimpom  cloud  cloudnative  clustering  collapse  commentary  computervision  computing  conda  consumertaste  container  containers  coreos  crows  culture  cyanotype  data-analysis  data-science  data  datascience  dataset  datasets  datasources  dataviz  deep-learning  deeplearning  demolition  dev  digital  dj  doc2vec  education  efficiency  emoji  encounter  ensemble  entity  eugeneonegin  eugenics  events  explanation  facebook  facedetection  fiction  financial  frequency  fulfillment  futurepresent  gartner  gender  globalism  google  gps  harrypotter  heaven  howto  if2017  ifttt  inference  infovis  inhabiting  insurance  janeausten  journalism  keras  keyword  language  learn  learning  lexicon  linguistics  list  literature  love  lstm  machine-learning  machine  machine_learning  machinelearning  marketing  markov  may17  meaning  measurement  memory  memoryless  military  mirror  ml  modeling  momemtum  multi-cloud  narrative  network-analysis  neural-net  neuralnetwork  neuralnetworks  news  newsletter  nlp  nltk  notebook  nsa  numbers  olympics  orchistration  packages  paper  papers  plans  pocket  podemo  politics  portuguese  postar  present  proposition  python  pytorch  quant  r-bloggers  r-project  r  racism  reddit  reference  repository  reproduction  research  reviews  rnn  rstats  sarcasm  satellit  science  sentiment-analysis  sentiment  sentimental  sentimentanalysis  socialmedia  society  spam  spectacle  speeches  starred  statistics  stocktwits  stories  story  stream  structure  surveillance  surveys  symbol  teaching  technology  television  text  textblob  textbook  theater  tidytext  time  tooling  tools  topic  topicmodel  trading  transformation  troll  tutorial  tutorials  tweets  twitter  upsidedown  user  venn  video  wbm  weather  web  word2vec  wordembeddings  wordpress  workflow 

Copy this bookmark: