Machinelearning   49849

« earlier    

NVIDIA/vid2vid: Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic video-to-video translation. It can be used for turning semantic label maps into photo-realistic videos, synthesizing people talking from edge maps, or generating human motions from poses.
machinelearning  video  cool  tools  graphics 
31 minutes ago by VoxPelli
Unsupervised Sentiment Neuron
While training the linear model with L1 regularization, we noticed it used surprisingly few of the learned units. Digging in, we realized there actually existed a single “sentiment neuron” that’s highly predictive of the sentiment value.
machinelearning  language  ai  SentimentAnalysis  linguistics  computing 
yesterday by wrrn
Twitter
With talks on new techniques for and and a panel on Urban Data Science, you d…
MachineLearning  TerritoryManagement  from twitter_favs
2 days ago by rukku
The Human Diagnosis Project
The Human Diagnosis Project (also referred to as "Human Dx" or "the Project") is a worldwide effort created with and led by the global medical community to build an online system that maps the best steps to help any patient. By combining collective intelligence with machine learning, Human Dx intends to enable more accurate, affordable, and accessible care for all.
health  medicine  ai  machinelearning 
2 days ago by ssorc
How do we capture structure in relational data?
The key insight behind the DeepWalk algorithm is that random walks in graphs are a lot like sentences.

Grover and Leskovec (2016) generalize DeepWalk into the node2vec algorithm. Instead of “first-order” random walks that choose the next node based only on the current node, node2vec uses a family of “second-order” random walks that depend on both the current node and the one before it.

Under the structural hypothesis, nodes that serve similar structural functions — for example, nodes that act as a hub — are part of the same neighborhood due to their higher-order structural significance.

For instance, a user’s graph of friends on a social network can grow and shrink over time. We could apply node2vec, but there are two downsides.

It could be computationally expensive to run a new instance of node2vec every time the graph is modified.

Additionally, there is no guarantee that multiple applications of node2vec will produce similar or even comparable matrices .

Node2vec and DeepWalk produce summaries that are later analyzed with a machine learning technique. By contrast, graph convolutional networks (GCNs) present an end-to-end approach to structured learning.
graph  machinelearning  deeplearning 
3 days ago by mike

« earlier    

related tags

2018  2masto  3d  abdsc  agile  ai  algorithm  algorithms  analytics  apachespark  app  art  artificialintelligence  astronomy  astrophysics  audio  autonomous  bi  bigdata  blogs  book  books  buildconference  buildlibrarylabs  by:meredithwhittaker  career  channel9  cloud  cluster  cnn  code  compiler  composition  computervision  computing  conference  container  control  convolution  cool  course  creativity  culture  curso  data  datascience  datascientists  dataset  dataviz  debt  decor  deeplearning  density  directory  docker  education  ee  elo  ethics  eyeofestival  facebook  flow  forecasting  fpr  free  geneticalgorithms  github  glow  google  graph  graphics  guide  hadoop  health  health2.0  hmi  hpc  impressionism  inclusion  interactive  interactivediagram  ios12  knime  lanechanging  language  learning  lecture  linguistics  lstm  machine-learning  machinelearning  machinevision  math  medicine  ml  monitoring  neural-net  neuralnet  neuralnets  neuralnetworks  numericalcomputing  numericalmethods  numpy  ocr  online  optimization  painting  paper  parameterization  pizza  politics  ppc  probability  problemsolving  programming  pydata  pyspark  python  r  recipe  reference  references  reinforcementlearning  research  rnn  rstats  science  security  selfdriving  sentimentanalysis  seti  settfin  simulation  software  splunk  statistics  steering  style  talk  technology  tencent  tensorflow  territorymanagement  tersorboard  text  tf  time_series  tools  toread  totwitter  traffic  training  turk  tutorial  tutorials  uw  vehicles  video  videos  visualization  weka  whatif  workbench  yannis 

Copy this bookmark:



description:


tags: